Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

C. R. Girija, Noor Shahina Begum* and G. Nagendrappa

Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560 001, India

Correspondence e-mail: noorsb@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.125$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(4-Chlorophenyl)propane-1,2-dione 2-oxime

In the title molecule, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{Cl}$, the dihedral angle between the aromatic ring and propan-2-one oxime moiety is $54.05(4)^{\circ}$. In the crystal structure, the molecules exist as $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded dimers around the inversion centres.

Comment

The title compond, (I), is an α-oximino ketone. Recently, we have developed a simple method for the preparation of α oximino ketones (Mohammed \& Nagendrappa, 2003), which finds many applications in organic synthesis. It also serves as ligand for transition metal complexes. The oxime group in this compound is potentially ambidentate with possibilities of coordination through the N and/or O atom. Here we report its structure.

(I)

The title molecule (Fig. 1) is non-planar, with two planar segments in it, viz. the chlorophenyl ring and the $\mathrm{C} 1-\mathrm{C} 2-$ $\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 2$ plane; the dihedral angle between them is $54.05(4)^{\circ}$. The $\mathrm{C}=\mathrm{O}$ group is almost cis with respect to the $\mathrm{C} 7-\mathrm{C} 8$ bond, the torsion angle $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1-\mathrm{O} 1$ being $35.9(2)^{\circ}$; it is also nearly trans to the oxime group [$\mathrm{N} 2-\mathrm{C} 2-$ $\left.\mathrm{C} 1-\mathrm{O} 1=-159.49(15)^{\circ}\right]$. The geometrical parameters of the oxime group are comparable with the corresponding values found in other reported oximes (Saarinen \& Korvenranta, 1975; Bertolasi et al., 1982; Ciajolo et al., 1981; Hutton et al., 1979). An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction involving the carbonyl O atom is observed.

In the crystal structure, the inversion-related molecules are $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded through their oxime groups to form dimers (Fig. 2 and Table 2). These hydrogen bonds form rings of graph-set motif $R_{2}^{2}(6)$. Within the dimer, the hydroxyl O atoms are involved in weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions to form rings of graph-set motif $R_{2}^{2}(4)$. It is noteworthy that a significantly short $\mathrm{Cl} \cdots \mathrm{Cl}$ contact of $3.408(1) \AA$ is observed between Cl 1 and $\mathrm{Cl} 1(-x,-y, 1-z)$.

Experimental

The title compound was synthesized by the method reported by Mohammed \& Nagendrappa (2003). Cystals were grown by slow evaporation of a chloroform solution.

Received 12 September 2003
Accepted 30 September 2003
Online 7 October 2003

Figure 1
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The molecular packing in the title compound, viewed down the b axis, showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded dimers.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{2}$
$M_{r}=197.61$
Monoclinic, $P 2_{d} / c$
$a=11.066(2) \AA$
$b=5.9348(13) \AA$
$c=14.075(3) \AA$
$\beta=102.809(4)^{\circ}$
$V=901.4(3) \AA^{3}$
$Z=4$
$D_{x}=1.456 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7478 reflections
$\theta=1.9-28.0^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colorless
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	2116 independent reflections
\quad diffractometer	1827 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.022$
Absorption correction: multi-scan	$\theta_{\max }=28.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-14 \rightarrow 13$
$T_{\min }=0.930, T_{\max }=0.964$	$k=-7 \rightarrow 7$
7478 measured reflections	$l=-18 \rightarrow 18$

Refinement

Refinement on $F^{2} \quad w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0784 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$+0.2853 P]$
$w R\left(F^{2}\right)=0.125$
$S=0.95$
2116 reflections
140 parameters
H atoms treated by a mixture of independent and constrained refinement
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.043 (5)

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{C} 11-\mathrm{C} 4$	$1.7330(16)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.491(2)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.2138(19)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.499(2)$
$\mathrm{O} 2-\mathrm{N} 2$	$1.3906(16)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.491(2)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.2801(19)$		
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 2$	$112.17(12)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$116.11(13)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$125.21(14)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.49(14)$

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.82(2)$	$2.04(2)$	$2.830(2)$	$163(2)$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.82(2)$	$2.62(2)$	$3.219(2)$	$131(2)$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1$	0.96	2.43	$2.815(2)$	103

Symmetry code: (i) $1-x,-y, 2-z$.
The methyl H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$ and a rotating group model was used for their refinement. The remaining H atoms were located in a difference Fourier map and their parameters $\left(x, y, z\right.$ and $\left.U_{\text {iso }}\right)$ were refined. The $\mathrm{C}-\mathrm{H}$ distances are in the range 0.90 (2)-0.97 (3) \AA and the $\mathrm{O}-\mathrm{H}$ distance is $0.82(2) \AA$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

CRG thanks UGC-FIP for a Teacher fellowship. The authors thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRHPA-DST program.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bertolasi, V., Gilli, G. \& Veronese, A. C. (1982). Acta Cryst. B38, 502-511.
Ciajolo, M. R., Leij, F., Tancredi, T. \& Temussi, P. A. (1981). Acta Cryst. B37, 1130-1131.
Hutton, A. T., Irving, H. M. N. H., Nassimbeni, L. R. \& Gafner, G. (1979). Acta Cryst. B35, 1354-1360.
Mohammed, A. H. A \& Nagendrappa, G. (2003). Tetrahedron Lett. 44, 27532755.

Saarinen, H. \& Korvenranta, J. (1975). Acta Chem Scand. Ser. A, 29, 409-412. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

